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Introduction 
 
This meeting was held to develop recommendations for the methodology that will be 
used by UNAIDS to produces the May 2001 estimates and projections of HIV 
prevalence and AIDS mortality for all countries. The list of participants is given at the 
end of this document. The meeting was planned at the Epidemiology Reference Group 
meeting, held in Frascati in October 2000. At that meeting the following 
recommendations were made for the short-term projection of HIV prevalence: 
 

• Keep using available ANC data – time series of prevalence data given as a 
proportion of those aged 15-49. 

• Don’t include age-structure in the model used for short-term projections 
• UNPOP to translate non-age-structured projections into a pattern of prevalence 

and incidence with respect to age for projecting demographic impact 
• Move on from the `gamma`- Epimodel - try different epidemiological functions 

(or set of equations) where the parameters of model have a 
biological/epidemiological/demographic meaning 

• Different models should be validated using time series data of ANC data in four 
ways: 

i. Goodness-of-fit 
ii. Predict ‘future’ – edit out last 5-years of ANC data, use the model to 

project HIV prevalence over that period and then compare  
iii. Cross-validation of projections made by different models 
iv. Scant and poor input ANC data should be reflected in large confidence 

intervals about projected prevalence (or a refusal to project based on poor 
data). This is aimed at preventing model misuse. 

• Members of reference group to do the above validation work and to meet and 
decide on the function/set of equations to be used for the short-term projections at 
a meeting in Geneva just before or after Christmas. 

• The interface developed by Tim Brown will be used to implement the chosen 
function/set of equations. This model adds power to the method by allowing 
prevalence fits for different cohorts [sic. population subgroups] within a country 
and the possibility of fitting ranges rather than point estimates of prevalence 

• The possibility of fitting ranges of data, and also dividing data into cohorts [sic. 
population subgroups], should be given some more consideration. 

 
 
The full set of recommendations from the meeting in Frascati is available at http:// 
www.ceid.ox.ac.uk/unaids.  
 
This meeting therefore followed up on these recommendations through the hard work 
of a group of epidemiologists, demographers and statisticians. Each participant 
presented the approach to short-term projection that they had been working on, after 
which discussion led to recommendations for the model to be used by UNAIDS in the 
2001 estimates and projections. Following the meeting further work was carried out to 
validate the proposed model. This report presents a summary of the presentations given 
at the meeting, the issues that were discussed and a proposal for the model to be used 
for the 2001 UNAIDS country-specific estimates and projections of HIV prevalence. A 
formal description of this model is given at the end of the report and some analyses of 
its behaviour presented. 
 
 
 



 

The models presented at the meeting 
 
Six different approaches to the estimation and projection of HIV prevalence were 
presented at the meeting. Although somewhat divergent, these approaches had 
epidemiologic and demographic realism as their underlying theme, and reassuringly 
gave very similar prevalence projections despite their diversity. With the exception of 
one approach, projections were for the adult population without stratification by age. 
An additional model described in a manuscript distributed by Griff Feeney is available 
at http:// www.ceid.ox.ac.uk/unaids, together with a note on the sampling error of 
national prevalence estimates derived from HIV sentinel surveillance sites. 
 
A brief summary of the models presented at the meeting follows. In order to simplify 
the summary, a standard notation is introduced: Z is the number of individuals at-risk, X 
is the number of individuals not at-risk, and Y is the number of HIV positive 
individuals. The total population size, N = X + Y + Z. The force of infection, 

NrY /=λ , where r is a constant defining the relative magnitude of λ.  
 
John Stover of the Futures Group International, Glastonbury, CT, USA presented a 
simple epidemiological model with demographically realistic rates of entry into and 
exit from the adult population. This model stratifies the population into ‘susceptible’, 
‘infected’ and ‘AIDS’, with movement between these categories defined by a set of 
ordinary differential equations (ODEs). Progression rates are assumed constant and 
correspond to the reciprocal of the mean duration of infection prior to AIDS and the 
mean time spent with AIDS. To capture the rapid declines in HIV prevalence seen in 
some African countries, the force of infection λ, is not only dependent on HIV 
prevalence but also the cumulative number of deaths due to AIDS. Thus, 
 

MNDNYr )./).(/(=λ  
 
where D is the cumulative number of deaths due to AIDS and M is a scaling factor for 
behaviour change. 
Entry into the adult population can be calculated as the crude adult birth rate 15 yrs ago 
multiplied by the probability of survival to age 15. This is complicated by fertility 
reductions due to HIV and vertical transmission of HIV. This rate of entry can be 
approximated by the number of 15 yr olds divided by the population age 15-49 yrs. The 
non-AIDS adult death rate is determined from model lifetables, although this will be an 
approximation due to changes in the age structure of the adult population caused by 
AIDS mortality. 
The fits to median urban and rural HIV prevalence data for Kenya and Malawi using 
this simple epidemiological model were found to agree with earlier projections made by 
the Futures Group, based on detailed analyses of the data and more complex models. 
 
Geoff Garnett and Nick Grassly from the UNAIDS Epidemiology Reference Group 
secretariat at Imperial College, London University presented a simple epidemiological 
model, with an explicit demographic parameterisation of the rate of entry into and exit 
from the adult population (these demographic rates were taken directly from Basia 
Zaba’s work). This model divides the population into three categories: not at-risk, at-
risk and infected, with movement between these categories defined by a set of ODEs. 
Progression from infection to death was assumed to occur at a constant rate 
corresponding to the reciprocal of the mean duration of infection. The force of infection 



 

is dependent on the number of HIV positive individuals. The introduction of a not at-
risk population meant that observed patterns of HIV epidemics, where the epidemic can 
peak at a low prevalence, could be captured without the need to invoke behaviour 
change. 
As the HIV epidemic progresses, AIDS mortality results in a decline in the at-risk 
population relative to the not at-risk population. In other words the prevalence of risky 
sexual behaviour declines. An additional parameter in this model φ was introduced to 
allow an increase in the rate of entry into the at-risk population, relative to the not at-
risk population, in response to this decline. A large φ corresponds to maintenance of 
levels of risky behaviour in the face of AIDS mortality, whilst φ = 0 implies there is no 
change in the relative rate of entry to the at-risk population during the course of the 
epidemic. This parameter directly determines the endemic prevalence of HIV following 
the initial peak. 
The fitting of individual sentinel surveillance site data for a given country using 
maximum likelihood was demonstrated to give more stable fits than attempts to fit 
median prevalence estimates using least squares. The use of likelihood ratio theory to 
obtain statistical confidence limits about estimates and projections of HIV prevalence 
was described. These confidence limits are responsive to changes in the quantity and 
quality (sample size, but not representativeness) of the sentinel surveillance site data. 
 
Ping Yan from the Bureau of HIV/AIDS, STD and TB at Health Canada utilised an 
explicit functional form of an epidemic, based on a convolution of a log-logistic curve 
for new infections and a survival function post-infection such as the Weibull, log-
logistic or Gamma. The log-logistic function for new infections was parameterised in 
such a way as to allow only a fraction of the population to be at-risk, and has been 
previously demonstrated to provide a close approximation to simulated stochastic 
epidemics. 
Using this approach it was possible to fit HIV prevalence data to demonstrate the 
sensitivity of estimates of HIV incidence and prevalence to assumptions about the 
survival function. In general it was noted that prevalence projections were not very 
sensitive to the assumed survival function, whether log-logistic, gamma or Weibull, but 
that the corresponding incidence needed to generate these prevalence curves could be 
very different. Thus estimates of incidence should be interpreted with caution.  
 
Marc Artzrouni from the Laboratory of Applied Mathematics at the Université de Pau 
et des Pays de l’Adour, France presented an epidemiological model applied to a 
population assumed to be growing exponentially. Individuals were defined as 
susceptible, infected and non-susceptible, again allowing peak prevalence values at 
reasonable levels even for rapidly spreading epidemics. Progression from infection to 
death was modelled using a Weibull function. 
 
David Schneider from Life Assurance, Botswana presented a simplified version of the 
Actuarial Society of South Africa’s ‘ASSA 2000’ model of HIV spread. This model 
stratifies the population by age, sex and risk group, where risk groups correspond to 
prostitutes, STD patients, at-risk and not at-risk individuals. This model was able to fit 
observed prevalence data, but the large number of parameters meant there was not a 
unique set of parameters that described the best fit. For this reason, and because of time 
constraints envisaged in the country-specific curve fitting procedure, prevalence data 
was fitted by eye.  



 

This model is used by ASSA to model risk of death by age, sex and risk group. Such 
information is then used in the design of insurance policies. 
 
Basia Zaba from the Centre for Population Studies at the London School of Hygiene 
and Tropical Medicine presented an epidemiological model with rates of entry into and 
exit from the adult population based on demographic calculations. The adult population 
is divided into susceptible and infected individuals, with the force of infection defined 
as a function of HIV prevalence, 
 

NrY /=λ  
 
where r can change over time as a piecewise linear function. By allowing r to decline 
after a given time, the observed patterns of HIV epidemics can be fitted, with rapid 
initial spread but peak prevalence at low values. 
Different methods for the calculation of the rate of entry to the adult population were 
described, and the use of the crude adult birth rate with the probability of survival to 
age 15 found to be the most consistent estimator of the rate of entry (cf. the 15th 
birthday rate). 
Different expressions for the rate of progression from infection to death were explored. 
By allowing the rate of progression to depend on the mean time since infection in the 
population, the relationship between the probability of dying and time since infection 
was more accurately reflected than by assuming a constant rate of progression. 
Defining progression rates in this way also obviates the necessity of using integro-
differential equations if time since infection is to be explicitly represented. The 
projections of HIV prevalence that assumed a rate of progression dependent on mean 
time since infection tended to better fit the observed data than projections that assumed 
a constant rate of progression.  
The instability of fits to median prevalence data only, rather than individual site data, 
was demonstrated. 
 
 
The key features of the approaches to estimating and projecting HIV prevalence 
described above are captured in Table 1. This table provides a more detailed summary 
of the models presented. 
 
 
 



 

Table 1: A summary of the features of the models presented at the meeting. Models are 
referred to by the name of the presenter. 

 John Stover Geoff 
Garnett & 
Nick 
Grassly 

Ping Yan Marc 
Artzrouni 

David 
Schneider 

Basia Zaba 

1. ODEs or 
parametric 
curve 

ODEs ODEs Parametric ODEs ODEs ODEs 

2. End date of 
projections 

2000 2010 2005 2010/20 2050 2030 

3. Age- and/or 
sex-stratified 

No No No No Yes No 

4. HIV positive 
survival 

Exponential Exponential Gamma, 
Weibull or 
log-
logistic 
survival 

Weibull Weibull AIDS 
mortality a 
function of 
mean duration 
of infection in 
the population 

5. ‘Not at-risk’ 
population 
included? 

No Yes Yes (scale 
parameter, 
c) 

Yes Yes – ‘at-
risk’, ‘not at-
risk’, prost., 
STD 

No 

6. Requires 
population 
level 
behaviour 
change to fit 
observed 
prevalence 
trends 

Yes – the 
force of 
infection 
decreases 
with 
increased 
AIDS 
mortality 

No 
(although 
behaviour 
change can 
be specified 
by setting 
phi >0) 

No No No Yes – force of 
infection a 
piecewise 
linear function 
of time 

7. 
Demography 
captured 

Yes Yes N/A Exponential 
population 
growth at 
fixed rate 

Yes Yes 

8. Rate of exit 
of adult 
population 
(implications 
for adult 
population 
modelled i.e. 
15+ vs. 15-49) 

Crude adult 
death rate 
for 15-49 

Crude adult 
death rate 
for 15+ 

N/A N/A Age-specific 
non-AIDS 
death rates 
allows 15+ or 
15-49 
population to 
be modelled 

Crude adult 
death rate for 
15+ 

9. Rate of 
entry to adult 
population 

15th 
birthday 
rate or 
births and 
survival to 
age 15 

Births and 
survival to 
age 15 

N/A N/A Explicit age-
structure 

Births and 
survival to age 
15 

    



 

Table 1 continued…    
 John Stover Geoff Garnett 

& Nick 
Grassly 

Ping Yan Marc 
Artzrouni 

David 
Schneider 

Basia Zaba 

10. Data 
fitted 

1) Sites with 
≥ 10 yrs of 
data 
2) median 
urban and 
rural fitted 
separately -  
national 
estimate is a 
weighted 
average 

1) National 
level data as a 
weighted 
average of 
urban/rural 
median 
prevalence 
2) All sentinel 
sites 
accounting for 
sample size 

Average 
prevalence 
for groups 
of sites 
classified 
by 
geography 

Rural and 
urban 
median 
prevalence 

National 
level 
estimates as 
a weighted 
average of 
urban and 
rural 

National 
level 
estimates as 
a weighted 
average of 
urban and 
rural 

11. Curve 
fitting 
procedure 

Least 
squares 

1) Least 
squares 
2) Maximum 
likelihood 

Least 
squares 

1) Least 
squares 
2) eyeball 

Eyeball Least 
squares 

12. Stability 
of fits 
examined  or 
statistical 
confidence 
limits 

No Yes Yes No No Yes 

 
 
 
 
 
 
 
 
 
 
 



 

Recommended features of the UNAIDS model for the 2001 country-specific estimates 
and projections of HIV prevalence and incidence 
 
1. ODEs or parametric 

The model used will be based on differential equations that describe the 
movement over time of people between different categories (e.g. susceptible, infected, 
etc…). 
 
2. Timescale 

The timescale for the projections will be flexible, with the model capable of 
producing projections for between 5 and 50 years. 
 
3. Age- and/or sex-stratified 
 As decided previously based on data constraints and the need for a practical 
model, there will be no stratification of the model into age and sex categories. Ongoing 
work will explore sex and age stratification and how to link the short-term model to a 
fully demographic model. For the 2001 estimates of age-specific HIV incidence needed 
for demographic calculations, the age and sex-stratified model 'Spectrum’, developed 
by the Futures Group International, will be used.  
 
4. HIV positive survival 

The Weibull distribution will be used to reflect the pattern of AIDS mortality in 
relation to time since infection. The user of the model will be given the choice of one of 
three median survival times, which correspond to three predefined categories of 
progression (fast, medium and slow). A formal review of the literature will be carried 
out and discussion groups used to define these rates of progression. 
 
5. ‘Not at-risk’ population included? 
 Yes, a not at-risk population will be included. 
 
6. Requires population level behaviour change to fit observed prevalence trends
 The incorporation of a not at-risk population in the model allows the model to 
capture the dynamics of observed HIV epidemics without the necessity to invoke 
sexual behaviour change. Specifically, the model can reflect an epidemic that peaks at a 
low prevalence, but where the spread of HIV from a prevalence of zero to the peak 
occurred over just a few years. Against this picture of the ‘natural course’ of the 
epidemic, model parameters can be changed to reflect either a spontaneous change in 
sexual behaviour in response to observed AIDS mortality, or decreased rates of 
transmission and reduced levels of risky sex due to effective interventions. 
 
7. Demography captured 

It was agreed that the rates of entry into and exit from the adult population due to 
births and non-AIDS related deaths respectively should be defined using available 
demographic information. The data required for these demographic calculations will be 
supplied by the UN Population Division (Hania Zlotnik). The following two 
recommendations specify the details of these demographic calculations. 
 
8. Rate of exit of adult population  

Prevalence data from antenatal clinics (ANCs) acting as sentinel surveillance 
sites is reported for the age-range 15-49 yrs. If the model to be implemented by 



 

UNAIDS is to contain demographic realism, then the definition of the rate of entry and 
exit from the adult population has implications for the age range of the population 
modelled. The rate of entry can be defined as the 15th birthday rate, derived from the 
crude adult birth rate 15 yrs earlier, and the probability of survival from birth to age 15. 
Thus the lower age boundary of the population modelled is 15. If the upper age of the 
population is to be 49, then the rate of exit from the adult population (excluding AIDS 
mortality of HIV positives) needs to include both non-AIDS mortality rates for the 15-
49 population and the rate of aging out of the population (50th birthday rate). Because 
AIDS mortality can result in substantial changes in the age structure of the adult 
population, which is not captured in the non-age-stratified model described here, 
defining these rates will be complicated.  
 
At the meeting two approaches to the problem were suggested. The first was based on 
modelling the open-ended 15 yrs upwards (15+) population, such that only the crude 
adult death rate would need to be specified, and adjusting prevalence data to reflect this 
age distribution. It was hypothesised that the level and trends in this crude adult death 
rate in response to a shifting in the adult age structure due to AIDS mortality would be 
easier to capture than both the death rate and the 50th birthday rate. The second proposal 
was to estimate the 50th birthday rate by using an approximation based on the mean age 
at infection in the adult population.  
 
Before considering these two approaches it should be noted that if we are interested 
only in percentage HIV prevalence and incidence, then their fit to data from sentinel 
surveillance sites is robust to changes in how the rate of exit is specified (Figure 1). It is 
clear that when fitting prevalence data from all sentinel sites, the fitted prevalence and 
incidence are very similar for all values of µ.  
 

*starting from an arbitrary 1 million 
in 1965

µ = 0.008,0.010,...0.026

prevalence

incidence

Population 
size*

*starting from an arbitrary 1 million 
in 1965

µ = 0.008,0.010,...0.026

prevalence

incidence

Population 
size*

 
Figure 1 Maximum likelihood estimates of HIV incidence and 
prevalence, and the corresponding population projections for DR Congo 
sentinel surveillance site data for 10 different values of the rate of exit 
from the adult population µ. The range of µ used is for that observed in 
sub-Saharan Africa.  
 

Therefore it may not be too important how µ is defined, and we can continue with the 
definition of the adult population as being 15-49 yrs. However, as Figure 1 makes clear, 
if we are interested in projecting population numbers, or numbers of HIV positives, 



 

incident cases or AIDS deaths, then µ needs to be specified in a demographically 
correct way. 
 
Two approaches to the definition of the rate of exit: 
1). Crude adult death rate. This is the crude rate of mortality for the 15+ population in 
the absence of AIDS, which can be estimated from country-specific life tables in the 
years prior to the AIDS epidemic. The procedure for calculating the crude adult death 
rate was described by Basia Zaba. If N(x, t) is the size of the population at time t, for 
age group x, then using the UN Population division estimates of population numbers by 
5 year age group, we can calculate the crude adult death rate over time t to t + 5, as 
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This calculation might be carried out for the years 1950 to 1980 and projected using a 
linear model, or just the most recent estimate prior to the HIV epidemic used (e.g. 
1980). The crude adult death rate will be an approximation since it will change through 
time due to changes in the age structure of the adult population caused by AIDS 
mortality. Further investigation into the nature of these changes would be useful. 
 
Using the crude adult death rate in this fashion implies that the adult population which 
is modelled includes all individuals 15 yrs old and over. Because sentinel surveillance 
data is for pregnant women in the age range 15-49 yrs, it may be necessary to adjust 
this data prior to fitting the model. Further work following the meeting at La Mainaz 
suggests however, that such adjustment may be unnecessary. For most countries with 
large HIV epidemics the population is growing and life expectancy is low. This means 
that most people are under 50, and HIV prevalence for the open-ended 15+ age group 
will not be very different from the 15-49 age-group. Some simulations using an age- 
and sex-stratified model of HIV prevalence confirm this when applied to Togo and 
Uganda (Figure 2). This model stratifies the force of infection from the UNAIDS model 
by age, using the age-profile of the force of infection from cohort studies in Masaka, 
Kagera, Kisesa, and Mwanza (data courtesy of Basia Zaba). 
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Figure 2 Projected prevalence from an age and sex-stratified model for 
adults of age 15-49 and for those 15+ for fits to data from a) Togo and b) 
Uganda. 
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It is usually assumed that prevalence for the 15-49 age range is higher than for the 15+ 
population, because death from AIDS usually occurs before age 50 and HIV incidence 
for the 50+ population is low. This is seen for the prevalence projections for Togo, 
although the difference can be seen to be very small. The same is seen for Uganda until 
1997 when the pattern is reversed. These results are clarified in Figure 3, which shows 
the absolute and percentage difference in prevalence in the 15+ and 15-49 age-groups 
over the course of the epidemic in Togo and Uganda. The difference between the 
prevalence for the two age groups is small and never exceeds 10% of the mean or 1-2 
prevalence percentage points.  
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Figure 3 The absolute (dotted line) and percentage (solid line) 
difference in prevalence between the 15-49 and the 15+ age groups for 
age and sex-stratified projections fit to data from a) Togo and b) 
Uganda. 

  
The fact that the prevalence for the 15-49 yrs age group may drop below that for those 
15+, as for the Ugandan projections, is a result of a rapid decline in incident HIV cases 
(concentrated amongst the younger age-groups), and aging of those people with HIV. 
The same pattern is observed, even if AIDS free survival times are shorter for older 
individuals (results not shown). 
 
2). Crude adult death rate for the 15-49 yr age-group  plus rate of exit from this age-
group This would enable the model to explicitly reflect the 15-49 age group, but is 
complicated by changes in the age structure of the adult population through time caused 
by AIDS mortality. The impact of such changes on a rate of exit, µ, that includes the 
50th birthday rate are likely to be more dramatic than when µ is simply taken as the 
crude adult (15+) death rate. However this impact may be captured in a model relating 
µ to the mean age at infection in the adult population. The possibility of describing such 
a model is to be further investigated by John Stover. 
 
 
In the short-term, given time constraints, it was decided to proceed with the former 
approach of using just the crude adult death rate for the open-age group to define µ 
when modelling heterosexual epidemics. Further consideration needs to be given to 
epidemics amongst other risk groups, such as intravenous drug users (IDUs). The 
simple epidemiological model, as recommended here, should be an adequate reflections 
of the spread of HIV amongst IDUs by needle sharing, but the demographic parameters 
are clearly different for these groups. The rate of exit will need to be defined with 
reference both to mortality amongst IDUs, which tends to be higher than in the general 

a b 



 

population, and rates of giving up intravenous drug use. This may be derived form the 
mean time spent injecting drugs, if known. 
 
 
 
9. Rate of entry to adult population 
For heterosexual epidemics the adult population size will be explicitly modelled, with 
the starting value being based on UN Population Division estimates for the starting year 
of the model projections. Using the crude adult fertility rate based on UN Population 
Division data and survival of HIV negative children to age 15 based on the country 
lifetables, the number of individuals entering the adult population each year can be 
specified. This procedure is described in detail in the formal model description at the 
end of this document. It is assumed that all children who acquire HIV via vertical 
transmission do not to survive to age 15. 
 
For IDUs the rate of entry may be derived from the rate of exit as defined previously, 
and knowledge about trends in the size of the drug injecting population. Given the 
uncertainty about these parameters, estimates of the number of HIV positive IDUs 
should be given with the necessary caveats. Percentage prevalence and incidence 
estimates are likely to be more accurate.  
 
10. Data fitted 
 All data from individual sentinel surveillance sites will be used rather than 
median prevalence estimates, thus avoiding to a certain extent the problem of unstable 
fits due to the small number of fitted data points (Figure 4). Different prevalence curves 
can be fitted to different user-defined groups of sites e.g. urban, rural, and coastal. 
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Figure 4: Different prevalence projections obtained for the Democratic 
Republic of Congo for slightly different demographic parameters when only 
median prevalence data is fitted. Fits based on all sentinel surveillance site 
data are more stable to changes in demographic parameters (Figure 1). 

 
11. Curve fitting procedure 
 It was decided to define the groups of sites to be fitted (e.g. rural, urban, 
national) prior to the curve fitting procedure. The prevalence curve for that group can 



 

then be fitted to all individual sites using the least squares approach. Care should be 
taken that local optima are not found by the fitting procedure. 
 
This least squares fitting procedure should be weighted, such that sites considered 
outliers or ‘unbelievable’ can be weighted down. In addition, sites that are thought to be 
particularly representative can be weighted up. In countries where enough information 
exists, population proportional sampling (PPS) may be considered.  
 
 12. Statistical confidence limits 
 These will not be produced for the May 2001 estimates and projections. 
However, it was decided that they will be necessary in the next year or two and 
therefore need to be explored more fully. It is important that the relative magnitude of 
the statistical component of error, which is likely to be small, compared to the impact of 
sex differences in prevalence, selection biases in the sample, and mis-specification of 
model is made clear. It is also important to differentiate between the confidence about 
estimates of prevalence based on existing data, and confidence in projections of 
prevalence into the future. A note on sampling error of estimates of HIV prevalence 
from sentinel surveillance sites prepared by Griff Feeney is attached as an appendix. 
 
13. Discrete vs. continuous time implementation 

The model will be implemented in continuous time (i.e. solved in very small time 
steps on a computer). 

 
14. Sex ratio of prevalence projections 
 This will be specified after fitting the model and be based on empirical 
estimates. It will be allowed to vary over time if enough information is available. 
 
15. Output required from the model 
 The outputs required from the model are: 
 

1. Sex-specific prevalence for age groups 15-49, and 0-14. The latter estimate will 
be produced by projecting the number of HIV positive and negative births, and 
survival curves for HIV positive and negative children (the survival of HIV 
negative children will be country-specific and based on UN Population Division 
data). 

2. Incidence for the same age-groups also by sex, where incidence is described as 
the number of new infections per year per individual in the population. It may 
also be useful for an incidence rate per susceptible per year to be output 
(traditionally termed the force of infection). 

3. Numbers of adult and child AIDS deaths by sex 
 
 



 

Formal Model Description 
 
Z = at-risk population 
X = not at-risk population 
Y = infected 
N = X + Y + Z 
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where )/( NXf  is the fraction of those individuals entering the adult population (Et) 
who enter the at-risk group Z, and is given by 
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where f0 is the fraction of individuals entering the at-risk group at the start of the HIV 
epidemic, and φ  is a parameter which determines how )/( NXf  changes with respect 
to f0 once AIDS mortality starts to occur. For 0=φ , )/( NXf  remains constant at f0. 
For 0>φ , the at-risk population is maintained in the face of AIDS mortality by an 
increase in the proportion of people entering the at-risk group. This might be 
considered a reflection of the demand for risky sex maintaining the size of the at-risk 
population, or the gradual exposure of previously isolated (and therefore not 
susceptible) risk groups to sources of HIV infection. This isolation may be geographic 
or cultural. For 0<φ , AIDS mortality in the at-risk group results in a decrease in the 
proportion of individuals entering this group. This negative feedback means that 
observation of AIDS mortality makes people less likely to engage in risky sexual 
behaviour. The relationship of )/( NXf  to X/N (the fraction currently not at-risk in the 
population) and φ  is shown in Figure 5a. The impact different values of φ  can have on 
prevalence projections is shown in Figure 5b. These projections show that φ  is a 
determinant of the endemic prevalence of HIV.  
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Figure 5 a) The relationship of f(X/N) to X/N and φ . For positive φ , if the at-
risk population declines (and hence fraction not at-risk X/N increases), the 
fraction recruited to the at-risk population increases, asymptotically 
approaching 1. For negative φ  the opposite patterns is observed, whilst for 

0=φ , f(X/N) remains constant at f0 (which for this graph is set to 0.3). b) The 
impact of different values of φ  on prevalence projections. 

 
 
g(x) is the density function for mortality from AIDS or other causes, and is given by, 
 

])/(exp[)/()( 1 αα βµβαµ xxxxg −−+= −     …(5) 
 
where α is the shape parameter of the Weibull distribution fitted to HIV survival times 
and β is the position parameter. The parameter β can be defined with reference to the 
median survival time, m: 
 

])2/[ln( /1 αβ m=        …(6) 
 
For ease of use of the model it may be best to pre-define the shape parameter α based 
on available empirical data, and use three values of median survival times 
corresponding to slow, medium and rapid progression. 
 
Model parameters 
 
Calculated or fixed model parameters 
 

1. crude adult (15+) death rate, µ 
2. numbers entering adult population at time t, Et (dependent on births and survival 

to age 15 - see below) 
3. force of mortality due to AIDS, x years after infection (Weibull function for 

survival used) 
  
When modelling a heterosexual epidemic the numbers entering the adult population at 
time t, Et can be specified in terms of the births of HIV negative children −

−15tB  
occurring 15 years previously, and the cohort survival proportion, l to age 15.  In turn, 

−
−15tB  can be expressed in terms of the birth rate b that is applied to the adult population 



 

at the time, with suitable allowances made for the probability of vertical transmission, 
υ, and a fertility reduction term ε applied to the HIV positive population: 
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We make the assumption that HIV positive births, B+, do not survive to adulthood.  
However, if we are interested to project their number, this is simply: 
 

)9(Ltt YB ⋅⋅=+ εν  
 
To ensure compatibility between the initial birth rate and the fifteenth birthday rate at 
the start of the projection, we assume an initially stable age structure and equate the 
initial growth rates, c, in the adult population and the general population.  This involves 
solving the following, using the base year (e.g. 1965) values of b1965, l1965 and µ1965. 
 

)10(01965
15

1965 L=−−⋅⋅ − celb c µ  
 
Model parameters estimated when fitting prevalence data 
 

1. Fraction of population entering at-risk group before epidemic starts, 0f  
2. Summary measure of sexual contact rates and transmission probabilities, r  
3. Start date of the epidemic - specified by having the ‘exogenous’ force of 

infection, ι, a function of time 
4. Response of at-risk population recruitment to AIDS mortality, φ  

 
 
Model behaviour 
 
The model produces a prevalence curve rising initially exponentially and then 
asymptotically approaching an epidemic peak, before potentially declining to an 
endemic prevalence. Because of the specification of the Weibull survival function of 
HIV positives, the decline to an endemic prevalence follows a pattern of damped 
oscillations. A fit to data from the Democratic Republic of Congo and projected 
prevalence until 2050 demonstrates these oscillations (Figure 6). 
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Figure 6 Fit of UNAIDS 2001 model of HIV prevalence to DR Congo 
sentinel surveillance site ANC data 

 
The amplitude of these oscillations is determined by the sharpness of the incidence 
peak, which in turn is determined by r and f0. For most fits to country sentinel 
surveillance site data these oscillations were of a small amplitude.  
 
The sensitivity of the prevalence during the course of the epidemic to a small increase 
in the epidemiological parameters of the model is shown in Figure 7. The constant 
multiplier in the force of infection, r, and the initial proportion of the population at-risk, 
f0, determine the rate of take-off of the epidemic. The size of the peak of the epidemic is 
insensitive to changes in r, but sensitive to the fraction of the population at-risk f0. The 
endemic prevalence is determined by all three epidemiological parameters, but with 
sensitivity to φ restricted to this part of the prevalence curve, such that φ can be used to 
determine the final endemic prevalence. 
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Figure 7 Sensitivity of prevalence through the course of the epidemic 
shown to small increase in the epidemiological parameters r, f and φ. 
Sensitivity is defined as S = [P(x+dx) - P(x) ] / dx, where P(x) is the 
prevalence for parameter with value x, and dx is the small change in x.  



 

 
 
When fitting sentinel surveillance site data, the projected prevalence is sensitive to the 
specification of the force of mortality from AIDS following infection with HIV (in 
contrast to the insensitivity of fitted prevalence curves to the specification of the 
demographic parameters µ and the birth rate). The fit of DR Congo sentinel 
surveillance site prevalence data where an exponential and Weibull distributed survival 
with HIV are hypothesized is shown in Figure 8a (in both cases median survival was 10 
yrs). Although the difference between the two prevalence projections is not great, it 
becomes more pronounced for projected prevalence further into the future.  
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Figure 8 The maximum likelihood fit of prevalence curves to sentinel 
surveillance site data from the DR Congo for a) an exponential and 
Weibull distributed HIV positive survival time, and for b) Weibull 
distributed survival with median survival times of 7, 10 and 14 yrs. 

  
Figure 8b shows the fit to DR Congo prevalence data for different assumptions about 
the median survival time post-seroconversion for HIV positives. Again, somewhat 
different fits are obtained for different survival times1. Thus, correct specification of the 
survival function and median survival time is likely to be important if better prevalence 
estimates and projections are to be produced. 
 
In order to estimate φ  and hence the endemic prevalence of HIV after the epidemic has 
peaked, some prevalence data post this peak are required. For countries where such data 
exists, φ  may be reasonable well specified. For example, the likelihood surface around 
the maximum likelihood estimate (MLE) of φ  for the Democratic Republic of Congo is 
steep enough to obtain upper and lower bounds on φ  using the likelihood ratio statistic 
(Figure 9a). In contrast, for Togo, where the prevalence of HIV is still rising, φ  can 
take almost any value without any significant impact on the likelihood (Figure 9b). For 
countries where the epidemic has yet to peak it may be advisable to choose a value of 
φ  a priori – whether this should be 0 or some other value remains unclear. 
 
 

                                                 
1 Interestingly, the best fit of these three mean survival times is 10 years, consistent with our 
expectations. However, cohort studies provide better information on median survival than do maximum 
likelihood estimates from prevalence data.  
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Figure 9 Likelihood surfaces about the MLE of φ  for a) the Democratic 
Republic of the Congo and b) Togo. For the DR Congo upper (9.4.) and lower 
(-8.4) confidence limits about φ  based on the likelihood ratio statistic are 
shown. 
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Abstract HIV Sentinel Surveillance (HSS) data may be regarded 
as an imperfect realization of a two stage sample for which 
sampling error can be calculated. The calculated sampling errors 
are evidently lower bounds for the actual sampling error of 
national HIV prevalence estimates derived from HSS data. For a 
simulated population with 32.5 percent prevalence, samples of 300 
women from each of 10 antenatal clinic (ANC) sites give a 
sampling distribution with an inter-quartile range of 2.6 percent. 
Estimated prevalence would therefore be expected to err by more 
than 1.3 percent half the time. It is suggested that, where numbers 
of HSS sites vary greatly from one year to another, fits of 
projection models should take account of the variable sampling 
error of the data points for different years. 

 
§1 Introduction HIV Sentinel Surveillance (HSS) was not intended to be a basis for 
national estimates of HIV prevalence. For most countries, the antenatal clinic (ANC) 
sites are not a representative sample of any well-defined population. Self selection of 
women for clinic attendance makes representative sampling of women impossible. 
Sampling error therefore cannot be established by standard methods. 
 
At the same time, it is clear that (i) national prevalence estimates derived from this data 
are subject to sampling error and (ii) that this error is higher than it would be if sites 
and women were representative but otherwise comparable samples. 
 
The idea of this note is to (a) specify a two stage, representative sample that would 
provide data similar to that provided by HHS data; (b) calculate sampling errors for 
national prevalence estimates based on this sample; and (c) regard these errors as lower 
bounds for the sampling error of national estimates derived from HHS data. 
 
While it may be possible to compute sampling distributions for some estimators 
directly [1], the method used here is to simulate “true” data for an hypothetical country, 
draw repeated random samples from this data, and compute estimates from these 
samples to obtain sampling distributions. 
 
Estimates of sampling error are pertinent to the fitting of models to observed prevalence 
because, in general, sensible fits require some notion of possible error in the data fitted 
to. Perhaps more importantly, the number of HSS sites available in any particular 



 

country varies greatly from year to year, and this implies that data points for different 
years should be accorded different weights when fitting models. 
If least squares fits are used, for example, weighted least squares fits with weights 
varying inversely with estimated sampling error, will evidently give far more defensible 
results than unweighted least squares. 
 
§2 Designing the Sample Imagine a particular country divided into n well-defined 
geographic areas, each corresponding to the catchment area of an antenatal clinic 
(ANC). Suppose that every such area does in fact contain an ANC. Suppose further that 
a simple random sample of k of these n sites is drawn, and that from each of these k 
sites a simple random sample of mk pregnant women is drawn. 
 
§3 Selecting an Estimator National prevalence estimates seem to be mostly based on 
medians of site-specific prevalence values. Why is the median used in preference to the 
obvious alternative, the “binomial” estimator defined as the sum of the HIV positive 
women from all sites divided by the sum of the number of women tested at each site? Is 
it because of the robustness of the median against outliers? Because numbers of women 
tested are sometimes not available? The question is pertinent because the binomial 
estimator is arguably superior. Both estimators will be considered below. 
 
§4 Simulating the Population The first step is to simulate a population from which the 
sample will be drawn. This will consist of specifying the number of pregnant women 
and HIV prevalence for the n areas comprising the country. Prevalence values will be 
generated from a beta probability density distribution, 
 

11
, )1(

)()(
)()( −−−

ΓΓ
+Γ= νµ

νµ νµ
νµβ xxx , 0 < x < 1, (1) 

which has mean )/( µνν +  and variance )]1()/[( 2 +++ νµνµµν  [2]. Moment 

estimates are given by m
v

mm −−= )1(2

µ and )1()1( 2

m
v

mm −−−=ν , m denoting an 

observed mean and v and observed variance. 
 
1997 data for 9 sites in rural Botswana (4 values interpolated from surrounding years), 
for example, give the following prevalences. 
 

Site Prevalence
Maun 0.333
Chobe 0.383
Kweneng & K. East 0.405
Lobatse 0.337
Serowe / Pala 0.344
Tutume 0.337
Southern district 0.232
Kgatleng 0.305
Mahalapye 0.282  

 
The mean and variance are 0.3287 and variance 0.0026, which give 06.27=µ and 

25.55=ν . The resulting distribution is shown in Figure 1 below. 
 



 

Figure 1 Beta Density with 06.27=µ and 25.55=ν  
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Prevalence figures for the n areas may be generated by the following line of R code 
 

true.prevalence.all.areas <- rbeta(n,27.06,55.25)

 
where the desired number of areas is substituted for n [3]. This will return a vector of n 
values drawn from a beta distribution with the indicated parameters. 
 
We assume for the present the same number of pregnant women in each area, so that 
“true” national prevalence is the simple average of the “true” prevalence over all areas. 
 
§5 Simulating a Two Stage Sample The first stage will select k areas from the n areas 
comprising the country. This may be effected with the R command 
 

true.prevalence.sample.areas <- sample(true.prevalence.all.areas,
k)

 
where true.prevalence.all.areas denotes the vector of prevalence values for all 
areas, true.prevalence.sample.areas the vector of values for sample areas, and k is 
replaced by the number of areas desired. 
 
The second stage will select mk women from the k-th sample area. For the present we 
simply sample from a  binomial distribution with probability equal to the prevalence for 
the sampled area and number of trials equal to the number of women in the sample. The 
R command for effecting this is 
 

sample.hiv.positive <- rbinom(1, nwomen,
true.prevalence.sample.area)

 
where nwomen denotes the number of women in the sample. This is repeated for each 
sample area. Sampling without replacement could be implemented with slightly more 
effort. 
 
 



 

§6 Program Code The following R program 
 

• takes as input (i) the vector giving true prevalence for all areas, (ii) 
the number of areas to be sampled, and (iii) the number of women to 
be sampled in each area; 

• draws a sample and computes national prevalence by either the 
median or the binomial estimator; and 

• produces as output the national prevalence estimated either by the 
median or the binomial estimator. 

 
In the following tpaa denotes total.prevalence.all.areas. Lines beginning 
with # are comments. One of the estimator lines should be “commented out”. 
 

simulate.sample.estimate <- function(tpaa, nsites=10, nwomen=300)
{

#stage 1: select sample areas
tpsa <- sample(tpaa, nsites) # true prevalence for

[sample|all] areas
#stage 2: select pregnant women from sample areas
scsa <- rep(0,nsites) # sample counts hiv+ for sample areas
for (i in 1:nsites) {

scsa[i] <- rbinom(1,nwomen,tpsa[i])
}
#calculate estimates of national prevalence (comment out one)
estimates <- median(scsa/nwomen)
#estimates <- sum(scsa)/(nsites*nwomen)
estimates

}

 
Using this program to draw samples repeatedly we generate a sampling distribution for 
estimated national prevalence. The R program code for this follows. 
 
distribution.of.estimates <-
function(tpaa,nsites=10,nwomen=300,nsamples=20){

estimates <- rep(0,nsamples)
for (i in 1:nsamples) {

estimates[i] <- simulate.sample.estimate(tpaa, nsites, nwomen)
}

estimates
}

 
Having defined a true.prevalence.all.areas vector providing the population data 
from which the samples are drawn (§4) the function is executed by 
 
estimates<-
distribution.of.estimates(tpaa,nsites=10,nwomen=300,nsamples=1000)

 
The resulting vector estimates provides the distribution of estimates from the samples 
drawn. 
 
§7 First Results “True” prevalence values for 500 areas are drawn from a beta 
distribution with the parameters indicated in §3 above. True national prevalence for this 
population, the average of the prevalence over all 500 areas, is 0.325. The standard 



 

deviation over all 500 areas is 0.052. The interquartile range is 0.072. Figure 2 below 
shows the histogram of the distribution. 
 

Figure 2 
Distribution of True Prevalence in Population 
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Samples from this population will be drawn by taking a simple random sample of 10 
areas and then a simple random sample of 300 women from the ANC site in each area. 
Drawing 1,000 such samples and estimating national prevalence as the median of the 
sample prevalence for the 10 sampled sites for each sample gives the sampling 
distribution shown in Figure 3 below. 

Figure 3 
Distribution of Estimates of National Prevalence 
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The mean and median are both 0.323. The standard deviation and interquartile range 
are 0.019 and 0.026. The interquartile interval is thus approximately 0.323±0.026/2 = 
(0.310, 0.336). We expect estimates to be outside this interval about half the time. 
 
The binomial standard deviation for the same number of women (3,000) with the same 
probability of being HIV positive (0.323) is (root p(1-p)/n) 0.009. The design factor of 
the sample is thus approximately 0.019/0.009 = 2.1. 
 
Recall now that these sampling errors assume perfect execution of a strictly 
representative two stage sample, which in turn requires the assumption that the entire 
country is divided into ANC catchment sized areas all served by an ANC, and finally 
that it is possible to take a simple random sample of women in each area sampled. Most 
HSS data, regarded as a sample for estimating national prevalence, fall very far short of 
this. Must we not conclude that actual sampling errors for national HIV prevalence 
estimates are greater than those indicated here? 
 
§8 Sample Design Three hundred women is a reasonable sample size to obtain an 
estimate of prevalence for the population of women who utilize a particular ANC. From 
the point of view of designing a sample to provide national prevalence estimates it may 
be far too large. It is intuitively plausible that if women within areas are homogeneous 
but areas have different prevalence, better results will be produced by sampling fewer 
women from more areas to obtain the same total number of women. The median 
estimator performs very poorly in this context with small samples of women, however, 
so we change to the binomial estimator (§3). 
 
Sampling 30 women (rather than 300) from 100 areas (rather than 10) gives the same 
number of women (3,000), but a much tighter the sampling distribution, as shown in 
Figure 4 below. 
 

Figure 4 
Distribution of Estimates of National Prevalence 

100 Areas, 30 Women, Binomial Estimator 
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The improvement over Figure 3—note that the horizontal scales are comparable—is 
dramatic. The mean here is 0.325, the standard deviation 0.010, the interquartile range 
0.013. 
 
Sample design involves cost as well as sampling error. Is it more expensive to sample 
30 women from 100 sites than to sample 300 women from 10 sites? The labour of 
coordination and of compiling the data is greater, but the number of tests is the same 
and they are administered by more people (an advantage or disadvantage, depending on 
how much training is required). New testing methods, such as dry blood spot testing, 
may make samples from larger numbers of sites more feasible in the future than it is 
now. 
 
§9 Discussion  Based on the foregoing, a rough indication of the error in a national 
HIV prevalence estimate based on HSS data may be obtained in the following way, 
assuming that national prevalence is calculated as the median prevalence over n sites 
with 300 women tested at each site. 
 
(1) Compute the standard deviation of the estimate on the assumption that it is based on 
a simple random sample, estimated by the binomial standard deviation 

npp /)1( − where p is estimated prevalence and n is the number of women tested. (2) 
Multiply this value by 2 to obtain an estimate of the standard deviation of the 
distribution of the sampling distribution of the median estimator. (3) Multiply this value 
by 1.3 to estimate the interquartile range of the sampling distribution. (4) Divide the 
interquartile range by 2 and take this value to be the typical error, in either direction, of 
the estimate. 
 
Consider for example estimated prevalence for rural Uganda, 8.4 percent, based on 24 
sites [4]. Sample sizes are not available for these sites, and though they might be found 
in [5], for the purpose of this illustration we assume that 300 women were tested at each 
site, for a total sample size of 7,200. The corresponding binomial standard deviation is 
0.0033. Multiplying by 2 for the sample design effect and by 1.3 to convert to 
interquartile range gives 0.009, half of which is 0.0045. Thus we expect the estimate of 
8.4 percent may err by about 0.5 percent (absolute) in either direction. 
 
The sample design factor of 2 applied here is based on a distribution of “true” 
prevalence derived from data for rural Botswana, which has a much higher prevalence 
and therefore a different distribution of prevalence among areas/sites. How robust is 
this factor against this difference? How much different would the result be if the 
distribution of true prevalence were re-estimated for rural Uganda? 
 
Fitting a beta distribution to the rural Uganda data gives 04.2=µ and 55.17=ν . 
Repeating the experiment described in §7 with 500 areas, 24 sampled areas/sites and 
300 women tested per site and drawing 1000 samples gives a standard deviation of 
0.014. The corresponding binomial standard deviation (p = 0.110, n = 7,200) gives  
0.004, for an estimated sample design effect of 3.5. This is considerably greater than 
the 2.1 initially derived (does this reflect the lower prevalence?), indicating that more 
work must be done to develop sample design factors for different parameter values. 
 



 

§10 Conclusion  The results reported here suggest that the sampling error of national 
HIV prevalence estimates derived from HIV Sentinel Surveillance data is at least 2-4 
times greater than that of a simple random sample of the same number of women. 
Further examination of available data for the adequacy of beta distribution fits and 
simulation calculations to refine the results would seem to be worth pursuing. 
 
This note has not addressed the selection problems of the HSS data, which may be 
more severe than sampling errors. Selection errors cannot be effectively addressed 
without collecting data for previously unsampled segments of the various populations. 
Without such data, modeling and simulation studies can do little more than reiterate 
their inputs. The sampling design considerations of §8 are pertinent, however, to the 
design of data collection efforts. 
 
As noted in §1, estimates of sampling error are pertinent to the fitting of models to 
observed prevalence because of the number of HSS sites available in any particular 
country often varies greatly from year to year. This suggests that when fitting by, e.g., 
least squares, weighted least squares fits with weights varying inversely with estimated 
sampling error should be used. 
 
Acknowledgements I am grateful to Basia Zaba for numerous comments on a previous 
draft. 
 
References 
 
[1] Deming, William Edwards. 1966. Some Theory of Sampling. New York: Dover 
Publications, Inc. Reprint of 1950 edition published by John Wiley & Sons. See 
Chapter 5, “Multistage Sampling.” 
 
[2] Feller, William. 1966. An Introduction to Probability Theory and Its Applications, 
Volume II. New York: John Wiley & Sons, Inc. 
 
[3]  The R Core Team. 2000. The R Reference Index. Version 1.1.1 (August 15, 2000). 
Available online at http://www.r-project.org/ . R is a language and environment for 
statistical computing and graphics freely available at the same World Wide Web site. 
 
[4] Reformatted data contained in sentinelsites.zip file provided by Basia Zaba (based 
on TestData.xls file provided by Neff Walker), Uganda.xls file, input data sheet. 
 
[5] HIV/AIDS Surveillance Data Base. 2000. US Bureau of the Census. Available 
online at http://www.census.gov/ipc/www/hivaidsd.html . 
 
 


